Statistics with Python
  • Sequential
    • 01 - Introduction
    • 02 - Preparation
    • 03 - Statistical Basics
    • 04 - Work Process
    • 05 - Comparing the Means
  • Unsequential
    • BetaPERT Distribution
Powered by GitBook
On this page
  1. Sequential

04 - Work Process

Previous03 - Statistical BasicsNext05 - Comparing the Means

Last updated 2 years ago

Professional Work Process

But first, let's get the work process straight.

We'll manage data using (get an account or run your own instance), and create an API token.

So, let's say we have a view for data, like this:

Use the library to read it:

In [1]:
from fxy.io.baserow import BaserowIO
API = 'https://data.mindey.com/'
API_TOKEN = 'C9gZFb15B8KAvWGihyr8YOGm62SSDlTD'
io = BaserowIO(API, token=API_TOKEN)
df = io.get_table(232)
df
1it [00:00,  4.64it/s]

Out[1]:
   id                   order uid                  date       Variable    Unit    value
0   1  1.00000000000000000000   1  2022-04-04T11:00:00Z  blood:glucose  mmol/l  5.34000
1   2  2.00000000000000000000   2  2022-05-20T12:00:00Z  blood:glucose  mmol/l  4.74000
2   3  3.00000000000000000000   3  2022-04-04T11:00:00Z  urine:glucose  mmol/l  4.12000
3   4  4.00000000000000000000   4  2022-05-20T12:00:00Z  urine:glucose  mmol/l  4.11000

Now, we can do the same mean computation, like:

In [2]: df.value = pandas.to_numeric(df.value)
        df.value.mean()
Out[2]: 4.5775

Tip: To apply "to_numeric" wherever possible, use something like:

df_numeric = df.apply(pandas.to_numeric, errors='coerce').fillna(df)

Read more about type conversions .

baserow.io
baserow-client
here